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• The key differences between EMT and RMS-type simulation solutions

• Electromagnetic transients in power systems

o Characteristics 

• Circuit equations and solution methods

o State-space formulation

o Dommel’s method

• Techniques used for fast and accurate solutions

o Sparse matrix 

• Network Impedance Characteristics and transient response

• Practical simulation examples that highlight application areas 

Introduction to the Fundamental Concepts of EMT Simulation and 
Circuit Solution Methods
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• Cable, line, station insulation design
o Switching Over-Voltage studies – Arrester ratings
o Power System lightning performance – BIL
o Temporary Overvoltage studies (TOV)
o Breaker Transient Recovery Voltage (TRV)

• Wind and Solar PV integration studies
o Performance during faults
o Interaction with other devices near the POI
o FACTS technologies to support wind
o Application of HVDC transmission (VSC, LCC) 

• System Harmonic and power quality analysis

• Protection modeling and testing

• Sub-Synchronous Resonance

Common Applications 
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PSCAD/EMTDC – The Industry Standard EMT Program
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In an EMT simulation, the instantaneous values 
are calculated by solving time domain circuit 
equations.
• RMS quantities are derived from the 

instantaneous solution.

EMT Solution
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EMT and RMS Type Simulation Results
The results (even RMS quantities) are derived from two different methods of 
mathematical circuit solution techniques

Wind farm fault ride through Synchronous generator fault ride through
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Example: Closing the breakers has initiated an electromagnetic transient

Electromagnetic Transients in Power Systems - Characteristics
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Example: Closing the breakers has initiated an 
electromagnetic transient. 

• The energy exchange between L-C causes the 
oscillatory transient. 

• Resistance in the circuit acts to damp the transient.

Transients are initiated due to a change to the 

network topology
• Switching Events
• Faults and fault clearance
• Lightning
• Others

Electromagnetic Transients – General characteristics

• High frequency oscillations

• Damped (short duration) loads and losses

Steady state solution

• RMS Value of voltages and currents

o Magnitude and phase

Electromagnetic Transients in Power Systems - Characteristics
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EMT and RMS simulation – Main differences 
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• Load Flow / Transient Stability 
• Each solution based on phasor 

calculations
• PSSE, ETAP, PSLF, BPA

Transients and Steady State Solution

• Electro-Magnetic Transients
• Direct time domain solution of 

Differential Equations
• PSCAD, RTDS

)()()()( ωωωω ILjIRV ⋅+⋅= )()()( ti
dt
dLtiRtv +⋅=

i
• 50 Hz solution on network side
• Good for low frequency electro 

mechanical oscillation studies.
• Difficult to represent power electronic 

converter response (wind, PV)
• Cannot represent ac system resonances
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RMS
• Assume quasi-steady state
• Network transients neglected
• Fundamental phasor solution
• Positive sequence
• Large network possible 

EMT
• Consider differential equations
• Numerical integration substitution
• Upper freq. depends on simulation 

time step (0~MHz) 

Transients and Steady State Solution
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EMT Vs RMS Response 
• Network (electric circuit) dynamics

o Harmonics are represented
o DC offset in currents and voltages are represented

• Fast controls of inverters can be better represented
• Interaction between fast acting power electronic devices can be studied

However, EMT simulations are slow compared to RMS type simulations
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EMT Vs RMS Response – Inductive Circuits 
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EMT Solution Methods: Circuit Equations – In State-Space form
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Hermann W Dommel : Any circuit element may be represented using 
equivalent resistors and current sources

EMT Solution Methods: Dommel’s EMT Formulation
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Dommel’s EMT Formulation: Any circuit element may be represented using equivalent resistors and current sources
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EMT Solution Methods: Dommel’s EMT Formulation
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Dommel’s EMT Formulation: Any circuit element may be represented using equivalent resistors and current sources

EMT Solution Methods: Dommel’s EMT Formulation
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System Y Matrix
• Algebraic equation
• Note the large number of zero elements in the Y matrix
• If L,R and C elements are constant, elements of the Y matrix does not change

Dommel’s EMT Formulation: Any circuit element may be represented using equivalent resistors and current sources

EMT Solution Methods: Dommel’s EMT Formulation
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DSDYN

Network
Solution

DSOUT

t = t + ∆t

t = 0

System
dynamics

DSDYN
• Solves the electrical component 

models and control systems models
• Compute the history current terms 

before the network solution is solved

[I] = [Y] . [V]

DSOUT
• Output quantities after network 

solution is solved
o Example: Compute RMS voltage, 

power……

EMT Solution Methods: Structure of EMTDC Solution Engine



Some Points to Remember……
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Representing Transmission Lines and Cables

A B

• Transmission lines have inherent ‘propagation delays’

• The networks at the two ends are eclectically ‘de-coupled’ due to the delay introduced by the line (over the
duration of the calculation time step)
o Ability to solve circuits A and B as independent circuits

BA



pscad.com
Powered by Manitoba Hydro International Ltd.

  0.1750 0.1800 0.1850 0.1900 0.1950 0.2000 0.2050 0.2100 0.2150 0.2200   
  
  

-200 
-150 
-100 

-50 
0 

50 
100 
150 
200 

Vo
lta

ge

 Ea

-6.0 
-4.0 
-2.0 
0.0 
2.0 
4.0 
6.0 
8.0 

Cu
rre

nt

 Ia

  0.1750 0.1800 0.1850 0.1900 0.1950 0.2000 0.2050 0.2100 0.2150 0.2200   
  
  

-200 
-150 
-100 

-50 
0 

50 
100 
150 
200 

Vo
lta

ge

 Ea

-2.0 
0.0 
2.0 
4.0 
6.0 
8.0 

10.0 
12.0 

Cu
rre

nt

 Ia

A simple example to illustrate the importance of 
‘sensitivity’ analysis to find the ‘worst case’.

∫= dtVArea .

∫= dtV
L

i .1
dt
diLV =

Integral is the area under the (voltage) curve

V

L1

Parametric Analysis – Example: Point on Wave (POW) Impact
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Illustrative Simulation Examples

1. Capacitor Switching

2. Transient Recovery Voltage (TRV)

3. Line Energizing 

4. Transformer Energizing 

5. Lightning Overvoltage study example

6. Black Start restoration Study example

7. Ferro Resonance 

8. Sub Synchronous Torsional Interactions (SSTI)

9. Wind/ PV Dynamic response

10. Synchronous machine response
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Modeling Non-Linear Elements
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An iron core inductor example (representing iron saturation) – represented with a linear 
inductor in shunt with a current source

𝐿𝐿1 =
𝜆𝜆1

𝐼𝐼1

Dommel’s form
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Time Scales of Power System Phenomena
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Characterization of Transient Phenomena



Thank you

dharshana@mhi.ca
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